Velocity and temperature scaling in a rough wall boundary layer

R. A. Antonia and R. J. Smalley

Department of Mechanical Engineering, University of Newcastle, New South Wales 2308, Australia

(Received 31 January 2000)

Measurements of the three velocity fluctuations u, v, w and of the temperature fluctuation θ have been made in a turbulent boundary layer roughened by wall-mounted spanwise cylindrical rods regularly spaced in the streamwise direction. Power-law exponents have been estimated for spectra, cospectra, and the corresponding structure functions associated with u, v, w, and θ at various locations across the layer. In the scaling range, the u and v spectra exhibit the largest and smallest slopes, respectively. The slope of the temperature spectrum is quite close to that of the spectrum corresponding to the mean turbulent energy $\langle q^2 \rangle$. The scaling range slope of the $u\theta$ cospectrum is greater than that of the uv cospectrum which, in turn, is slightly larger than that of the $v\theta$ cospectrum. These observations are fully supported by the relative behavior of the structure functions. The magnitudes of the scaling exponents decrease as the wall is approached while those of the intermittency exponents increase.

PACS number(s): 47.27.Nz, 47.27.Lx, 47.27.Gs

I. INTRODUCTION

It has been pointed out [1,2] that, for turbulent shear flows, the inertial range (IR) slope, n_{θ} , of the scalar spectrum is less steep than anticipated unless the magnitude of the Taylor microscale R_{λ} Reynolds number exceeds about 1000. This behavior is not unique to the scalar spectrum. Spectra of the lateral velocity fluctuation v also have an inertial range slope n_{ν} whose magnitude is typically smaller than that (5/3) predicted by the Kolmogorov 1941 [3], or K41, phenomenology unless R_{λ} is at least 1000. A plausible explanation for this behavior is that isotropy in the inertial range, a key ingredient of K41, is not strictly satisfied unless R_{λ} is large, possibly even larger than 10000. There is evidence [4-6], based primarily on the relative behavior of $\langle (\delta u)^2 \rangle$ and $\langle (\delta v)^2 \rangle$, the second-order longitudinal and transverse velocity structure functions [here $\delta u \equiv u(x+r)$] -u(x) and $\delta v \equiv v(x+r) - v(x)$ are the increments of the longitudinal u and lateral v velocity fluctuations, r is the component of the separation vector along the x direction to indicate that K41, or more appropriately the refined phenomenology of the Kolmogorov 1962 [7], will be approached asymptotically. There is also evidence [5] suggesting that this approach may not be universal, in that the exponents for $\langle (\delta v)^2 \rangle$ may vary in different flows, or even in different regions of the same flow, for nominally the same range of R_{λ}

There are only a few experiments (e.g., [8]) where measurements of all three velocity fluctuations as well as the scalar fluctuation are available. In [8], the focus was entirely on comparing the turbulent energy spectrum $\phi_q(k_1)$, defined such that $\int_0^{\infty} \phi_q(k_1) dk_1 = \langle q^2 \rangle \equiv \langle u^2 \rangle + \langle v^2 \rangle + \langle w^2 \rangle$ (*w* is the spanwise velocity fluctuation and k_1 is the one-dimensional wave number) or twice the mean turbulent kinetic energy, with the temperature spectrum $\phi_{\theta}(k_1)$, defined such that $\int_0^{\infty} \phi_{\theta}(k_1) dk_1 = \langle \theta^2 \rangle$ (θ is the temperature fluctuation). When normalized to unity area, the distribution of $\phi_{\theta}(k_1)$ and $\phi_q(k_1)$, measured in a number of turbulent shear flows, were found to virtually coincide, at least over a range of k_1 which contributes significantly to the variances $\langle \theta^2 \rangle$ and $\langle q^2 \rangle$.

previous observations would suggest that the magnitude of n_q , the IR slope of $\phi_q(k_1)$, viz., $\phi_q(k_1) \sim k_1^{n_q}$, should be close to that of n_{θ} . Alternately, in the context of secondorder structure functions, the expectation is that ζ_{a} and ζ_{θ} should have approximately the same magnitude [9]. Here, ζ_{β} represents the IR exponent of $\langle (\delta\beta)^2 \rangle$, viz., $\langle (\delta\beta)^2 \rangle \sim r^{\zeta \beta}$, where, in general, $\delta\beta \equiv \beta(x+r) - \beta(x)$. The similarity between $\langle (\delta q)^2 \rangle$ and $\langle (\delta \theta)^2 \rangle$ was considered in some detail in [9] for values of r in the dissipative and inertial ranges as well as when r is comparable to the integral length scale L. Reasonable support for $\zeta_a \simeq \zeta_{\theta}$ has been obtained in the wake of a slightly heated circular cylinder [10]. The boundary layer data of Mestayer [11] at $y/\delta \approx 0.33$ (y is the wall normal coordinate and δ the boundary layer thickness) suggested that $n_a \simeq n_{\theta}$. Sreenivasan [2] has already noted that, for the latter data, $n_{\theta} \approx 1.49$, a value significantly smaller than the Corrsin-Obukhov [12] value of 5/3. While the discrepancy may in part be attributed to an insufficiently large R_{λ} (= 616 in this case), other factors, such as the wall surface condition and the mean shear, cannot be dismissed. It is important to know how these factors affect the relative magnitudes of n_{β} or ζ_{β} . In the context of a smooth wall turbulent channel flow, the magnitude of ζ_u has been found to decrease as the wall is approached, a result ascribed to the intermittent presence of near-wall organized and relatively intense vortical structures [13-15]. This would in turn lead to an increased intermittency of the energy dissipation rate, consistent with the observed departure from ζ_{μ} from K41.

In this paper, we consider a boundary layer over a specific type of roughness with the wall slightly heated so that temperature can be treated as a passive scalar. The fluctuations (u,v,θ) and (u,w,θ) are obtained in separate experiments, as a function of distance from the wall. This allows estimates of both n_{β} and ζ_{β} to be obtained, the latter using two different methods. Special attention is paid to the similarity between ϕ_q and ϕ_{θ} or between $\langle (\delta q)^2 \rangle$ and $\langle (\delta \theta)^2 \rangle$. In particular, we consider how n_q (or ζ_q) and n_{θ} (or ζ_{θ}) vary when the surface is approached. An attempt is made to quantify the intermittency associated with different quantities using the scaling range in $\langle (\delta u)^2 (\delta \beta)^4 \rangle$.

640

FIG. 1. Rod roughness geometry. Plan and elevation views are shown together with coordinate axes.

II. EXPERIMENTAL DETAILS

Measurements were carried out in a zero-pressure gradient turbulent boundary layer over a rod-roughened wall. A detailed description of the wind tunnel was given in [16]. The boundary layer was tripped by a 4-mm-diam cylindrical rod followed by a 150-mm-wide strip of No. 40 sandpaper. The roughness extends 3 m downstream of the trip and consists of cylindrical copper rods (Fig. 1) spanning the height of the tunnel [the boundary layer develops over a slightly heated aluminum wall in the x-vertical (x-z) plane. The rods are placed at a streamwise pitch to roughness height ratio (p/k) of 4. The wall temperature, T_w , was constant over the first 2.5 m of the boundary layer and $\Delta T \ (\equiv T_w)$ $-T_1$, where T_1 is the ambient temperature) was 12.3 °C. To a good approximation, the flow may be considered to be free from buoyancy effects, since at a distance x = 2.1 m from the trip, $Gr_x/Re_x^2 (\equiv [g\beta\Delta Tx^3/\nu^2]/[U_1x/\nu]^2) \approx 0.002; \beta$ is the coefficient of thermal expansion and U_1 is the freestream velocity.

For $U_1 = 20 \text{ ms}^{-1}$, the Reynolds number based on momentum thickness, R_{θ} (= $U_1 \delta_2 / \nu$; δ_2 is the momentum thickness), was 15000. The Reynolds stresses and turbulent heat fluxes were measured using two probes aligned in the x-y and x-z planes. Both consisted of a cold wire located immediately upstream and perpendicular to the plane of the X wire. This arrangement minimized the influence of the hot wire on the cold wire. The wires ($d_w = 1.25 \ \mu \text{m Pt} - 10\% \text{ Rh}$) of the X probe in the x-y plane were etched to an active length l_w of 0.21 mm. The separation between the wires was 0.4 mm and the included angle was 95°. A separate experiment was carried out with an X probe in the x-z plane. The wires $(d_w = 2.5 \,\mu\text{m}, l_w = 0.5 \,\text{mm})$ were separated by 0.45 mm; the included angle was 104° . The cold wire (d_w = 0.6 μ m Pt-10% Rh) for both probes was etched to l_w =0.62 mm. The hot and cold wires were operated by inhouse constant temperature (at an overheat ratio of 1.5) and constant current (0.1 mA) anemometers, respectively. The probe was calibrated in the freestream of the working section against a Pitot tube connected to a Furness manometer. The yaw calibration was performed over $\pm 20^{\circ}$. Each probe was

TABLE I. Kolmogorov scales and flow parameters R_{λ} and S^* .

y/δ	R_{λ}	η (mm)	(ms^{-1})	<i>S</i> *
0.09	280	0.054	0.28	0.052
0.19	330	0.060	0.26	0.057
0.37	390	0.067	0.23	0.053

traversed in the y direction. A typical record duration was 32 s although longer durations (200 s) were used at five y locations. The signals were low-pass filtered (cutoff frequency $f_c = 16 \,\mathrm{kHz}$), using fourth-order Butterworth filters and digitized at a frequency $f_s = 2 f_c$ with a 12-bit sample-and-hold A-D converter. The choice of f_c was estimated from the spectra of the unfiltered differentiated voltage signals using a real-time spectrum analyzer. The Kolmogorov length (η $\equiv \nu^{3/4} / \langle \epsilon \rangle^{1/4}$) and velocity $(u_K = \nu^{1/4} \langle \epsilon \rangle^{1/4})$ scales were estimated using the isotropic value for the mean energy dissipation rate $\langle \epsilon \rangle$, i.e., $\langle \epsilon \rangle_{\rm iso} = 15\nu \langle (\partial u/\partial x)^2 \rangle$, with $\langle (\partial u/\partial x)^2 \rangle$ $=\int_0^\infty k_1^2 \phi_u(k_1) dk_1$. Before carrying out this integration, $\phi_{\mu}(k_1)$ was corrected for noise and extrapolated to large wave numbers by assuming an exponential decay of the spectrum (e.g., [17]). At the same y, there is agreement (to within 2%) between $\langle \epsilon \rangle$ obtained from both the long and short duration data and also different probe geometries. Note that $\langle \epsilon \rangle_{iso}$ is likely to underestimate the true value, especially near the wall [18]. Measured energy budgets from which $\langle \epsilon \rangle$ was inferred by difference (diffusion by pressure fluctuations was neglected) confirmed this expectation. However, the use of $\langle \epsilon \rangle_{\rm iso}$ should be adequate for obtaining estimates of η and u_K ; also, the precise value of $\langle \epsilon \rangle$ is not important in the context of this paper where the primary interest is the relative behavior of the scaling exponents.

Because of the possible errors associated with the use of Taylor's hypothesis near the wall, where the local turbulence intensity is high $(\langle u^2 \rangle^{1/2}/U > 0.3)$ and the effect of the turbulent/nonturbulent interface over the outer region, we have focused mainly on the range $0.1 \leq y/\delta \leq 0.5$. Table I gives the Kolmogorov scales and nondimensional flow parameters $R_{\lambda} \left[\langle u^2 \rangle^{1/2} \lambda / \nu, \text{ where } \lambda \equiv \langle u^2 \rangle^{1/2} / \langle (\partial u / \partial x)^2 \rangle^{1/2} \right]$ is the longitudinal Taylor microscale] and mean shear $S^* \left[\equiv (\partial U/\partial y) (\nu/\langle \epsilon \rangle)^{1/2} \right]$ for the 200-s records within this range. Note that, over this range, the normalized mean shear is approximately constant while R_{λ} increases with y/δ . Taylor's hypothesis is used to estimate both k_1 and r from f and τ , respectively, where τ is a time delay. Depending on the specific context, an asterisk denotes normalization by η , u_K , and/or $\theta_K \equiv (\langle \epsilon_{\theta} \rangle \eta / U_K)^{1/2}$. The temperature scale θ_K is based on the mean temperature dissipation rate $\langle \epsilon_{\theta} \rangle$ and the Kolmogorov time scale (η/U_K) .

III. SPECTRAL SCALING EXPONENTS

Several different methods were used to estimate the second-order scaling exponent n_{β} . One estimate was based on identifying the optimum plateau in the compensated *u* spectrum. Once the widest plateau was found (by trial and

FIG. 2. Kolmogorov-normalized spectra of u, v, w, θ , and q at $y/\delta = 0.37$. Also shown is a compensated u spectrum to help identify the scaling range. Note that $\int_0^{\infty} \phi_{\beta}^*(k_1^*) dk_1^* = \langle \beta^2 \rangle / U_K^2$ when $\beta \equiv u, v, w$ and $\langle \beta^2 \rangle / \theta_K^2$ when $\beta \equiv \theta$. —, $\beta \equiv u$; —, v; —, w; --, θ ; --, q; —, $k_1^{*1.59} \phi_u^*(k_1^*)$.

error) for $k_1^{n_u}\phi_u(k_1)$, the exponent n_β ($\beta \equiv v, w, \theta, q$) was subsequently inferred by least-squares fitting to ϕ_{β} over the scaling range based on ϕ_u [note that the exponent n_β is positive since it is assumed that $\phi_{\beta}(k_1) \sim k_1^{-n_{\beta}}$ over the scaling range]. This range was also used to determine the exponent $n_{\beta\gamma}$ corresponding to the $\beta\gamma$ cospectrum. This approach differs somewhat from that used in [1,2] or [19] where n_{μ} , n_v , and n_{θ} were estimated by optimizing the plateau in each case. The application of this latter method to the present data would have resulted in slightly different scaling ranges for each quantity β and also slightly different magnitudes of n_{β} ; however, the effect on the relative magnitudes of n_{β} or its variation with y/δ is sufficiently small not to affect the present conclusions. The scaling range in Fig. 2 (y/δ) =0.37; $R_{\lambda} \approx 390$), identified by the plateau in the distribu-tion of $k_1^{\pm 1.59} \phi_u^*(k_1^{\pm})$, is relatively large (about one decade in k_1^*). Over this range, spectra of different quantities exhibit relatively different slopes, ϕ_u^* and ϕ_v^* having the largest and smallest, respectively. Note that ϕ_w^* , ϕ_q^* , and ϕ_θ^* have approximately the same slopes. The convention used here is that $\int_0^\infty \phi_{\beta}(k_1) dk_1 = \langle \beta^2 \rangle$ while $\int_0^\infty \phi_{\beta}^*(k_1) dk_1 = \langle \beta^2 \rangle / U_K^2$, when $\beta \equiv u, v, w$ and $\langle \beta^2 \rangle / \theta_K^2$ when $\beta \equiv \theta$. The distributions of $k_1^* \phi_a(k_1^*)/\langle q^2 \rangle$ and $k_1^* \phi_{\theta}(k_1^*)/\langle \theta^2 \rangle$ in Fig. 3 are nearly inseparable except at very small or very large k_1^* . This

FIG. 3. Distributions of $k_1^* \phi_\beta(k_1^*)/\langle \beta^2 \rangle$ for $\beta \equiv u, q, \theta$ at $y/\delta = 0.37$. Note that $\int_0^\infty \phi_\beta(k_1^*) dk_1^* = \langle \beta^2 \rangle$. --, $\beta \equiv u$; ---, θ ; ---, q.

FIG. 4. Kolmogorov-normalized uv, $u\theta$, and $v\theta$ cospectra at $y/\delta = 0.37$. Also included is the same compensated u spectrum as shown in Fig. 2. --, $\beta \equiv u$, $\gamma \equiv v$; --, u, θ ; --, v, θ ; --, $k_1^{\pm 1.59} \phi_u^*(k_1^{\pm})$.

closely supports the proposal of [8]; an obvious implication of the figure is that there is a significant range of turbulence length scales which contribute equally to the turbulent energy and the temperature variance. The similarity is not restricted to the most energetic scales; in this context, it is not surprising that, for the scaling range identified in Fig. 2, $\phi_q^*(k_1^*)$ and $\phi_{\theta}^*(k_1^*)$ exhibit the same slopes.

Distributions of the uv, $u\theta$, and $v\theta$ cospectra measured at the same location as that for Fig. 2 are shown in Fig. 4; for reference, the compensated u spectrum of Fig. 2 is repeated here. The cospectra exhibit convincing power-law behaviors over the scaling range. The $u\theta$ cospectrum has the largest slope (2.18) and the $v\theta$ cospectrum the smallest (1.80); this behavior seems to reflect the relative magnitudes of the exponents n_u , n_θ , and n_v with n_u and n_v the largest and smallest, respectively. Estimates of n_u , n_v , n_w , and n_θ , inferred from the spectral slopes, are plotted in Fig. 5 as a function of y/δ . Data from both short and long records are shown. All exponents decrease as the wall is approached. The greatest reduction is in n_v , whereas n_u appears to be least affected. The effect on n_v probably simply reflects the important attenuating effect the wall exerts on the v (wall-normal) fluc-

FIG. 5. Variation with y/δ of spectral scaling exponents n_β for $\beta \equiv u, v, w, \theta, q$. Solid symbols correspond to long records; open and crossed symbols correspond to short records. \Box , $\beta \equiv u$; ∇ , v; \triangle , w; \bigcirc , θ ; \diamond , q. Crossed and \triangle symbols are from the (u, w, θ) probe; \Box , ∇ , \bigcirc symbols are from the (u, v, θ) probe. To avoid crowding, n_θ and n_q are plotted on the right vertical axis. Lines are shown to clarify the trend for each n_β .

FIG. 6. Distributions of $\langle (\delta\beta^*)^2 \rangle r^{*-\zeta_{\beta}}$ at $y/\delta = 0.37$. The magnitudes of ζ_{β} are shown. —, $\beta \equiv u$; —, v; —, w; -, θ ; ---, q.

tuation. The magnitude of R_{λ} decreases (see, e.g., Table I) as y/δ decreases over the range of y/δ covered here. It is tempting to ascribe the decrease in n_{β} , as y/δ decreases, to that in R_{λ} . Such an association would be consistent, at least qualitatively, with the increase in n_{β} with R_{λ} , observed in shearless grid turbulence, or in the region straddling the axis of symmetry, for either jets or wake flows. There are, however, at least two reasons which invalidate this association. First, the present increase in n_v is larger than that measured, over an equivalent R_{λ} range, in the previously mentioned flows or flow regions. Second, as mentioned in Sec. I, n_u (and a fortiori n_v) also decreases as a smooth wall is approached. For the channel flow investigation of [13], n_{μ} was found to decrease continuously between the center line and $y^+ \simeq 20$ (a similar trend was reported by [14]); and yet, R_{λ} increases from the center line to a maximum near $y^+ \simeq 10$ [20]. This trend is opposite to that observed over the present rough wall. A more likely explanation for the decrease in n_{β} close to the wall is that suggested in [13-15]. That is, there is an increased intermittency of the energy dissipation rate due to the presence of relatively intense vortical structures near the wall. The vortical structures near the present rough wall are likely to differ, with respect to both geometry, intensity, and also frequency of occurrence from those over a smooth wall or indeed over a different type of surface roughness. Some evidence for this was given in [21]. A consequence of the previous speculation is that each type of surface will have its own distribution of n_{β} .

IV. SCALING EXPONENTS FROM STRUCTURE FUNCTIONS

A second method of estimating a scaling exponent, closely related to that described in Sec. III, is to determine the "best" power-law exponents for the second-order structure functions $\langle (\delta\beta)^2 \rangle$, having first identified the scaling range. For consistency with the first method, this range is that corresponding to the widest plateau in $\langle (\delta u)^2 \rangle r^{-\zeta_u}$ which also compares well with the plateau in $\langle (\delta u)^3 \rangle r^{-1}$. The exponents ζ_β ($\beta \equiv v, w, \theta, q$) and $\zeta_{\beta\gamma}$ ($\beta \equiv u, \gamma \equiv v; u, \theta; v, \theta$) were subsequently obtained by applying least-

FIG. 7. Distributions of $\langle \delta \beta^* \delta \gamma^* \rangle r^{*-\zeta}$ at $y/\delta = 0.37$. The magnitudes of $\zeta_{\beta\gamma}$ are shown. —, $\beta \equiv u$, $\gamma \equiv u$; --, u, v; ---, u, θ ; ----, v, θ .

squares fits to $\langle (\delta\beta)^2 \rangle$ and $\langle (\delta\beta)(\delta\gamma) \rangle$ over the scaling range.

The corresponding distributions of $\langle (\delta\beta^*)^2 \rangle r^{*-\zeta_\beta}$ and $\langle (\delta\beta^*)(\delta\gamma^*) \rangle r^{*-\zeta_{\beta\gamma}}$ are shown in Fig. 6 and 7, respectively. The plateau in $\langle (\delta u^*)^2 \rangle r^{*-\zeta_u}$ is not as wide as that exhibited by $k_1^{*n_u} \phi_u^*(k_1^*)$ implying scaling ranges of different extents. A similar observation was made by [22]. Note also that the values of $n_u(=1.59)$ and $\zeta_u(=0.64)$ do not quite correspond in that n_u is smaller than $(1+\zeta_u)$. This correspondence has been discussed in some detail by Hou *et al.*[23], who emphasized that the finiteness of the power-law range makes the translation between the power law of the spectrum and that of either the correlation function or structure function inexact. Not surprisingly, the validity of this translation improves as R_λ increases (e.g., [24]) and the power-law range dilates.

Notwithstanding the inexactness of the translation for the present moderate values of R_{λ} , the relative magnitudes of different ζ_{β} and their variation with y/δ (Fig. 8) are closely similar to those of n_{β} in Fig. 5. In particular, the rate of increase of ζ_u with y/δ is relatively small while that of ζ_v is largest.

FIG. 8. Variation with y/δ of scaling range exponents ζ_{β} for $\beta \equiv u, v, w, \theta, q$ obtained for the same scaling range as was determined using $\langle (\delta u^*)^2 \rangle r^{*-\zeta_u}$. Solid symbols correspond to long records; open and crossed symbols correspond to short records. \Box , $\beta \equiv u; \nabla, v; \Delta, w; \bigcirc, \theta; \diamond, q$. \boxtimes and Δ symbols are from the (u, w, θ) probe; \Box, ∇, \bigcirc symbols are from the (u, v, θ) probe.

FIG. 9. Kolmogorov-normalized structure functions of u, v, w, θ , and q at $y/\delta = 0.37$. Solid lines are fits to the measurements obtained with Eq. (1). The magnitudes of ζ_{β} are shown. \Box , $\beta \equiv u; \nabla, v; \Delta, w; \bigcirc, \theta; \diamond, q$.

Two other estimations of ζ_{β} have been carried out. The first uses the relation

$$\left\langle (\delta\beta^*)^2 \right\rangle = \frac{a_\beta r^{*2}}{\left[1 + b_\beta r^{*2}\right]^{c_\beta}},\tag{1}$$

as a relatively reliable descriptor of the behavior of $\langle (\delta \beta^*)^2 \rangle$ for values of r^* which span the dissipative range and a significant portion of the inertial range. Equation (1) has been used by a number of authors (e.g., [25]) with $\beta \equiv u$. It has also been applied to data for $\beta \equiv u, v, \text{ or } \theta$ [26,27] to determine the R_{λ} dependence of $c_{\beta} \equiv (2 - \zeta_{\beta})/2$ in several flows (grid turbulence, jets, and wakes). Figure 9 indicates that Eq. (1) fits the measured distributions of $\langle (\delta \beta^*)^2 \rangle$ quite well. There is some arbitrariness [26] associated with the selection of r_{\max}^* , the maximum value of r^* used for fitting to the data. The magnitude of ζ_{β} is relatively insensitive to the choice of $r_{\rm max}^*$, where a significant plateau is observed in Fig. 6; indeed, a similar maximum is obtained using $\langle (\delta u^*)^3 \rangle r^{*-1}$ (not shown). The uncertainty in determining ζ_{β} increases when R_{λ} is small and the plateau is absent. The relative values of ζ_{β} , indicated on each curve (Fig. 9), closely mimic those of n_{β} inferred from the spectra (Fig. 5) and are in close agreement with those of ζ_{β} shown in Fig. 8. In particular, ζ_{v} is smallest and ζ_u largest; ζ_q and ζ_{θ} have the same magnitude. Whereas the distributions of $\langle (\delta q^*)^2 \rangle$ and $\langle (\delta \theta^*)^2 \rangle$ are different, the distributions of $\langle (\delta q)^2 \rangle / \langle q^2 \rangle$ and $\langle (\delta\theta)^2 \rangle / \langle \theta^2 \rangle$ (Fig. 10) follow each other closely.

Significant use has been made of the extended selfsimilarity (ESS) method [28] for determining ζ_{β} . This method is less effective when it is applied in regions where the effect of the mean shear is significant [29]; for this reason, ESS estimates of ζ_{β} are not presented.

V. INTERMITTENCY EXPONENTS

An estimate of the intermittency parameters μ_{β} , associated with each of the main quantities, was determined from the scaling exponents $\zeta_{\beta}(2,4)$, where

$$\langle (\delta u)^2 (\delta \beta)^4 \rangle \sim r^{\zeta_{\beta}(2,4)}$$

FIG. 10. Distributions of $\langle (\delta\beta)^2 \rangle$ normalized by the variance $\langle \beta^2 \rangle$ at $y/\delta = 0.37$. Solid lines are fits to the measurements obtained with the nondimensional form of Eq. (1). The magnitudes of ζ_β are shown. \Box , $\beta \equiv u$; ∇ , v; Δ , w; \bigcirc , θ ; \diamond , q.

 $(\beta \equiv u, v, w, \theta, q)$ via the relation

$$\mu_{\beta} = 2 - \zeta_{\beta}(2, 4). \tag{2}$$

To determine μ_q , $\langle (\delta u)^2 (\delta q)^4 \rangle$ was approximated by the expression $\{\langle (\delta u)^6 \rangle + 2[\langle (\delta u)^2 (\delta v)^4 \rangle + \langle (\delta u)^2 (\delta w)^4 \rangle$ $+\langle (\delta u)^4 (\delta v)^2 \rangle + \langle (\delta u)^4 (\delta w)^2 \rangle] \}$ since the term $\langle (\delta u)^2 (\delta v)^2 (\delta w)^2 \rangle$ was not measured. Figure 11 shows the variation of μ_{β} with y/δ ; only the longer records were used in order to minimize the uncertainty of estimating mixed sixth-order moments. As the distance from the wall increases, the magnitude of μ_{β} decreases. This is not consistent with the concomitant increase in R_{λ} but it is consistent with the previously reported increase in n_{β} (or ζ_{β}) with y/δ . The magnitude of μ_u at $y/\delta = 0.37$ is significantly larger than that for the high R_{λ} atmospheric flow of [30] or the cocensus value ($\simeq 0.25$) suggested in [31]. The difference between the present intermittency exponents and those usually quoted for 'fully developed'' turbulence, under nearly homogeneous and isotropic conditions, is not surprising. One expects the spatial intermittency of both the velocity and temperature dissipation rates to increase as the wall is approached and the effect of the shear, presumably via the relatively intense near-wall vortical structures, becomes more pronounced. It is

FIG. 11. Variation with y/δ of intermittency parameters μ_{β} for $\beta \equiv u, v, w, \theta, q$. Only data from the longer records have been used. $\Box, \beta \equiv u; \nabla, v; \Delta, w; \bigcirc, \theta; \diamond, q$.

also reasonable that the magnitude of μ_v is larger than that of μ_u or μ_w given that v is most affected by the presence of the wall. The larger value of μ_{θ} , relative to μ_u , is also not surprising but the small difference between the magnitudes of μ_{θ} and μ_q contrasts somewhat with the near-equality between ζ_{θ} (or n_{θ}) and ζ_q (or n_q). A possible cause for this may be the approximation we have used to generate $\langle (\delta u)^2 (\delta q)^4 \rangle$. A more likely possibility is the nonperfect correlation that exists between ϵ and ϵ_{θ} . This will be the subject of a future investigation.

The present μ_{B} estimates, via Eq. (2), have been obtained independently from intermittency models. It is therefore of interest to see how the models compare with the data for $\langle (\delta\beta)^2 \rangle$, when the present estimates of μ_{β} are used. The log-normal [7] and She-Lévêque [32] models both indicate that the magnitude of ζ_u exceeds $\frac{2}{3}$ and increases with increasing μ_u . In contrast, Fig. 5 indicates that ζ_u is always smaller than $\frac{2}{3}$. The log-normal model for temperature [33] predicts that the magnitude of ζ_{θ} is smaller than $\frac{2}{3}$. While this result is in qualitative agreement with ζ_{θ} in Fig. 5, the measured values of ζ_{θ} are significantly smaller than those predicted. Also, the decrease of ζ_{θ} with decreasing y is not reproduced by the model which indicates an increase in ζ_{θ} as μ_{θ} increases. The discrepancy between the predictions and the measurements is not surprising since the models were developed for high Reynolds number, homogeneous, and isotropic turbulence.

VI. CONCLUSIONS

Power-law exponents, associated with the scaling range, are estimated for both spectra and structure functions of several quantities, including all three velocity fluctuations and the temperature fluctuation measured in a turbulent boundary layer over a rough wall. These estimates, obtained using a number of different methods, are in quite reasonable agreement with each other. For each method, the magnitudes of the exponents decrease as the wall is approached. The reduction is ascribed to the increased intermittency due to the relatively intense near-wall vortical structures. The greatest reduction is observed for the exponents n_v and ζ_v associated with ϕ_v and $\langle (\delta v)^2 \rangle$, respectively. Consistently, the intermittency exponent μ_v is greater than either μ_u , μ_w , or μ_{θ} . The magnitudes of n_q and ζ_q , the scaling exponents corresponding to ϕ_q and $\langle (\delta q)^2 \rangle$, respectively, are in close agreement with those of n_{θ} and ζ_{θ} . This agreement supports the role played by the fluctuating velocity vector in advecting the passive scalar, especially in the present flow where the presence of the roughness is expected to result in an enhanced mixing of the scalar.

ACKNOWLEDGMENTS

We are grateful for the support of the Australian Research Council and to Professor P-Å. Krogstad for assistance with the experimental design and data acquisition.

- [1] K. R. Sreenivasan, Proc. R. Soc. London, Ser. A 434, 165 (1991).
- [2] K. R. Sreenivasan, Phys. Fluids 8, 189 (1996).
- [3] A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 301 (1941).
- [4] B. Dhruva, Y. Tsuji, and K. R. Sreenivasan, Phys. Rev. E 56, R4928 (1997).
- [5] B. R. Pearson, Ph.D. thesis, University of Newcastle, 1999 (unpublished).
- [6] B. R. Pearson and R. A. Antonia (unpublished).
- [7] A. N. Kolmogorov, J. Fluid Mech. 13, 82 (1962).
- [8] L. Fulachier and R. Dumas, J. Fluid Mech. 77, 257 (1976);
 L. Fulachier and R. A. Antonia, Int. J. Heat Mass Transf. 27, 987 (1984).
- [9] R. A. Antonia, Y. Zhu, F. Anselmet, and M. Ould-Rouis, Phys. Fluids 8, 3105 (1996).
- [10] R. A. Antonia and B. R. Pearson, Europhys. Lett. 40, 123 (1997); B. R. Pearson, T. Zhou, and R. A. Antonia, *ibid.* 44, 156 (1998).
- [11] P. Mestayer, J. Fluid Mech. **125**, 475 (1982).
- [12] A. M. Obukhov, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz.
 13, 58 (1949); S. Corrsin, J. Appl. Phys. 22, 469 (1951).
- [13] R. A. Antonia, P. Orlandi, and G. P. Romano, Phys. Fluids 10, 3239 (1998).
- [14] G. Amati, S. Succi, and R. Piva, Fluid Dyn. Res. 24, 201 (1999).
- [15] F. Toschi, G. Amati, S. Succi, R. Benzi, and R. Piva, Phys. Rev. Lett. 82, 5044 (1999).
- [16] P.-A. Krogstad, R. A. Antonia, and L. W. B. Browne, J. Fluid Mech. 245, 599 (1992).
- [17] D. O. Martinez, S. Chen, G. D. Doolen, R. H. Kraichnan, L. P.

Wang, and Y. Zhou, J. Plasma Phys. 57, 195 (1997).

- [18] R. J. Smalley, P.-A. Krogstad, and R. A. Antonia, in *Proceedings of the Thirteenth Australasian Fluid Mechanics Conference, Melbourne, 1998*, edited by M. C. Thompson and K. Hourigan (Monash University Press, Melbourne, 1998), p. 615.
- [19] L. Mydlarski and Z. Warhaft, J. Fluid Mech. 320, 331 (1996);
 358, 135 (1998).
- [20] R. A. Antonia, J. Kim, and L. W. B. Browne, J. Fluid Mech. 233, 369 (1991).
- [21] P.-A. Krogstad and R. A. Antonia, J. Fluid Mech. 277, 1 (1994).
- [22] B. R. Pearson and R. A. Antonia, in *Proceedings of the Eighth Asian Congress of Fluid Mechanics, Shenzhen, 1999*, edited by E. Cui (International Academic Publishers, Beijing, 1999), p. 145.
- [23] T. Y. Hou, X.-H. Wu, X. Chen, and Y. Zhou, Phys. Rev. E 58, 5841 (1998).
- [24] A. S. Monin and A. M. Yaglom, *Statistical Fluid Mechanics* (MIT Press, Cambridge, MA, 1975); T. D. Dickey and G. L. Mellor, Phys. Fluids **22**, 1029 (1979).
- [25] G. Stolovitzky, K. R. Sreenivasan, and A. Juneja, Phys. Rev. E
 48, R3217 (1993); S. Grossmann, *ibid.* 51, 6275 (1995); G. Stolovitzky and K. R. Sreenivasan, *ibid.* 52, 3242 (1995); C. Meneveau, *ibid.* 54, 3657 (1996).
- [26] R. A. Antonia, B. R. Pearson, and T. Zhou (unpublished).
- [27] R. A. Antonia, T. Zhou, and G. Xu, Phys. Fluids 12, 1509 (2000).
- [28] R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, and S. Succi, Phys. Rev. E 48, R29 (1993).
- [29] R. Benzi, L. Biferale, S. Ciliberto, M. V. Struglia, and R. Tri-

piccione, Europhys. Lett. 32, 709 (1995).

- [30] A. J. Chambers and R. A. Antonia, Boundary-Layer Meteorol.28, 343 (1984).
- [31] K. R. Sreenivasan and P. Kailasnath, Phys. Fluids A 5, 412

(1993).

- [32] Z. S. She and E. Lévêque, Phys. Rev. Lett. 72, 336 (1994).[33] N. N. Korchashkin, Izv., Acad. Sci., USSR, Atmos. Oceanic
 - [3] N. N. Korchashkin, Izv., Acad. Sci., USSR, Atmos. Oceani Phys. 6, 947 (1970).